Ch.9: Suites numériques - Généralités

Dans tout le chapitre, les entiers considérés sont naturels, c'est-à-dire positifs ou nuls.

1 DÉFINIR UNE SUITE NUMÉRIQUE

DÉFINITIONS 1

Soit un entier p.

Une **suite numérique** u **définie à partir du rang** p est une fonction qui à chaque entier $n \ge p$ associe un réel, noté u(n) ou u_n .

Cette suite est aussi notée $(u_n)_{n>n}$ ou (u_n) ou simplement u.

 u_n est appelé terme général de la suite ou terme d'indice n;

 u_n est le premier terme, ou terme initial, de la suite.

Commentaire:

 u_n se lit « u indice n ».

Remarques:

Attention à l'écriture indicielle :

- u_{n+1} est le terme d'indice n+1; c'est le terme qui suit le terme d'indice n, c'est-à-dire u_n . On ne doit pas le confondre avec u_n+1 qui est la somme de u_n , le terme d'indice n, et de 1.
- De même u_{n-1} est le terme d'indice n-1 ; il précède le terme u_n .

Indice	p	<i>p</i> + 1	p + 2	• • •	n-1	n	n + 1
Terme	u_p	u_{p+1}	u_{p+2}		u_{n-1}	u_n	u_{n+1}

Terme initial

Trois termes consécutifs

On étudiera essentiellement deux façons de définir ou générer une suite : par une formule explicite et « par récurrence ».

1.1 Définir une suite par une formule explicite

On définit dans ce cas la suite u par une expression du type : $u_n = f(n)$, où f est une fonction numérique.

On peut alors calculer directement chaque terme à partir de son indice.

DÉFINITION 2

Soit a un réel et f une fonction définie sur $[a; +\infty[$.

On peut définir une suite u en posant pour tout entier $n \ge a$, $u_n = f(n)$.

Exemple:

Soit la suite u définie sur \mathbb{N} par : $u_n = \sqrt{2n+6}$.

Ainsi pour tout entier $n \ge 0$, $u_n = f(n)$ où f est définie sur $[-3; +\infty[$ par $: f(x) = \sqrt{2x+6}$.

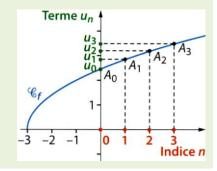
$$u_0 = f(0) = \sqrt{2 \times 0 + 6} = \sqrt{6}$$
;

$$u_1 = f(1) = \sqrt{2 \times 1 + 6} = \sqrt{8} = 2\sqrt{2}$$
;

$$u_2 = f(2) = \sqrt{10}$$
;

$$u_{100} = f(100) = \sqrt{206}...$$

Graphiquement, les termes de la suite u sont les ordonnées des points $A_n(n; u_n)$ d'abscisses entières de la courbe C_f représentative de f.



Exercice corrigé : Travailler sur des indices

- 1) Soit la suite u définie sur \mathbb{N} par $u_n = n^2 n$.
 - a) Calculer u_0 , u_{10} et u_{50} .

- b) Exprimer u_{n-1} , u_{n+1} et u_{2n} en fonction de n.
- c) Démontrer que pour tout entier n, $u_{n+1} = u_n + 2n$.
- 2) Soit la suite v définie sur \mathbb{N} par $v_n = 2^n \ (n^2 1)$. Démontrer que pour tout entier n, $v_{n+1} - v_n = 2n \ (n^2 + 4n + 1)$.

Solution:

1) a) $u_0 = 0^2 - 0 = 0$; $u_{10} = 10^2 - 10 = 90$; $u_{50} = 50^2 - 50 = 2450$.

- **b)** Pour tout entier $n: u_{n-1} = (n-1)^2 (n-1)$ $u_{n-1} = n^2 - 2n + 1 - n + 1 = n^2 - 3n + 2$;
- c) $u_{n+1} = (n+1)^2 (n+1) = n^2 + n$; $u_{2n} = (2n)^2 - 2n = 4n^2 - 2n$.
- **d)** Pour tout entier n: $u_{n+1}-u_n=(n^2+n)-(n^2-n)=2n.$ Donc pour tout entier n, $u_{n+1}=u_n+2n$.

Méthode :

On remplace n dans u_n par l'indice voulu. Ainsi :

- u_0 est obtenu en remplaçant n par 0 dans u_n .
- u_{n-1} est obtenu en remplaçant n par n-1 dans u_n (attention à bien mettre des parenthèses !)

On remplace u_{n+1} et u_n par leurs expressions en fonction de n, et on simplifie l'expression obtenue.

Pour tout entier $n: v_{n+1} = 2^{n+1} [(n+1)^2 - 1] = 2^{n+1} (n^2 + 2n + 1 - 1) = 2^{n+1} (n^2 + 2n)$. Donc $v_{n+1} - v_n = 2^{n+1} (n^2 + 2n) - 2^n (n^2 - 1)$ $v_{n+1} - v_n = 2^n \times 2^1 (n^2 + 2n) - 2^n (n^2 - 1)$ $v_{n+1} - v_n = 2^n [2(n^2 + 2n) - (n^2 - 1)]$ $v_{n+1} - v_n = 2^n (2n^2 + 4n - n^2 + 1)$. Donc pour tout entier $n, v_{n+1} - v_n = 2^n (n^2 + 4n + 1)$.

1.2 <u>Définir une suite « par récurrence »</u>

On donne dans ce cas la valeur du premier terme de la suite et un procédé appelé **relation de récurrence qui permet de calculer un terme à partir du précédent**.

Ce procédé permet de calculer le deuxième terme à partir du premier, puis le troisième à partir du deuxième, etc.

Commentaire:

Le « principe de récurrence » est une propriété fondamentale dans la construction des nombres. On peut le résumer ainsi :

« En partant de 0, et en ajoutant 1 à chaque étape, on construit l'ensemble des entiers naturels ».

DÉFINITION 3

Soit f une fonction définie sur un ensemble I.

On suppose que : si $x \in I$, alors $f(x) \in I$.

Soit *a* un nombre réel de I et *p* un entier.

On peut alors définir une suite u en posant : $\begin{cases} u_p = a \\ \text{pour tout entier } n \ge p, u_{n+1} = f(u_n) \end{cases}$

Exemple:

Soit la suite
$$u$$
 définie sur \mathbb{N} par : $u_0 = -1$ et $u_{n+1} = \sqrt{2u_n + 6}$.

Ainsi, pour tout entier $n \ge 0$, $u_{n+1} = f(u_n)$ où f est définie sur $[-3; +\infty[$ par $: f(x) = \sqrt{2x+6}$.

$$u_1 = f(u_0) = \sqrt{2u_0 + 6} = \sqrt{2 \times (-1) + 6} = 2$$
;
 $u_2 = f(u_1) = \sqrt{2u_1 + 6} = \sqrt{2 \times 2 + 6} = \sqrt{10}$; ...

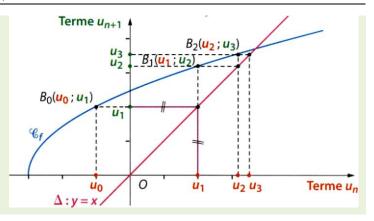
Avec ce procédé, pour calculer u_{100} , il faut connaître u_{99} , u_{98} , \dots

Graphiquement, $B_0(u_0;u_1)$ appartient à

la courbe \mathcal{C}_{ϵ} .

Pour déterminer $B_1(u_1; u_2)$, il faut placer u_1 , l'abscisse de $\boldsymbol{B}_{\!_{0}}$, en abscisse.

On « reporte » donc u_1 sur l'axe (Ox) en utilisant la droite Δ d'équation y = x. On poursuit de même pour construire $B_2(u_2; u_3), B_3(u_3; u_4), ...$



Remarque:

Lorsqu'une suite est définie par récurrence, on ne peut pas calculer directement un terme à partir de son rang, il faut procéder « de proche en proche » : pour calculer le dixième terme, on utilise la valeur du neuvième, obtenue elle-même grâce au huitième terme, ... Finalement, le calcul d'un terme nécessite de calculer tous les précédents!

DÉFINITION 4

Soit p un entier, et u et v deux suites définies à partir du rang p. Les suites u et v sont **égales** si pour tout entier $n \ge p$, $u_n = v_n$.

Remarque:

En particulier, si les suites u et v ont le même premier terme et vérifient la même relation de récurrence, alors elles sont égales.

Exercice corrigé : Calculer des termes d'une suite

Soit la suite u définie sur \mathbb{N} par : $u_n = (-2)^n + 3$.

Soit la suite v définie par $v_0 = 4$ et pour tout entier n, $v_{n+1} = -2v_n + 9$.

- 1) Pour chacune des suites u et v:
 - a) Déterminer les valeurs des trois premiers termes.
 - b) Vérifier à la calculatrice les valeurs obtenues à la question 1.a).
- 2) Quelle conjecture peut-on émettre sur les suites u et v? Démontrer cette conjecture.

Solution:

1) a) Les trois premiers termes sont u_0 , u_1 et u_2 . Pour la suite u, définie de façon explicite : $u_0 = (-2)^0 + 3 = 1 + 3 = 4$;

$$u_1 = (-2)^1 + 3 = 1$$
;
 $u_2 = (-2)^2 + 3 = 7$.

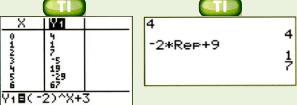
Pour la suite v, définie par une formule de récurrence :

 v_0 est connu : $v_0 = 4$.

$$v_1 = -2v_0 + 9 = -2 \times 4 + 9 = 1$$
;

$$v_2 = -2v_1 + 9 = -2 \times 1 + 9 = 7$$
.

b) Y1



<u>Méthode :</u>

Cas d'une suite définie par $u_n = f(n)$:

- On calcule l'image par f de l'indice voulu (0, puis
- À la calculatrice, on entre en Y1 l'expression de f, et on tabule f à partir du rang initial (ici 0) avec un pas de 1.

Cas d'une suite définie par récurrence : $v_{n+1} = (v_n)$:

 v_1 est l'image par f de v_0 ; v_2 est l'image par f de v_1 , etc. On calcule ainsi de proche en proche les ternies demandés.

À la calculatrice :

- on stocke le premier terme dans la mémoire de la calculatrice (avec la touche exe de Casio ou entrer de TI);
- on tape l'expression de f en remplaçant v_n par SHIFT (-) ou 2nde (-);
- on valide autant de fois que nécessaire.

2) On a : $u_0 = v_0$, $u_1 = v_1$ et $u_2 = v_2$.

On conjecture que les suites sont égales.

Pour tout entier n, $u_{n+1} = (-2)^{n+1} + 3 = -2 \times (-2)^n + 3$.

Or
$$u_n = (-2)^n + 3$$
. D'où $(-2)^n = u_n - 3$.

Donc, pour tout n, $u_{n+1} = -2 \times (-3) + 3 = -2u_n + 9$.

Les suites u et v vérifient la même relation de récurrence et ont le même premier terme : les suites u et v sont égales.

2 Sens de variation d'une suite

DÉFINITIONS 5

Soit une suite u et un entier p.

- La suite u est **croissante à partir du rang** p si pour tout entier $n \ge p$, $u_{n+1} \ge u_n$.
- La suite u est **décroissante à partir du rang** p si pour tout entier $n \ge p$, $u_{n+1} \le u_n$.
- La suite u est **monotone à partir du rang** p si elle est soit croissante à partir du rang p, soit décroissante à partir du rang p.
- La suite u est **constante** ou **stationnaire à partir du rang** p si pour tout entier $n \ge p$, $u_{n+1} = u_n$.

Lorsqu'on ne précise pas « à partir du rang p », cela signifie que la suite est croissante, décroissante, monotone, constante à partir du rang de son premier terme.

Étudier le sens de variation d'une suite consiste à préciser si la suite est croissante ou décroissante.

Remarque:

Comme pour les fonctions, lorsqu'on remplace les inégalités larges par des inégalités strictes, on parle de suite **strictement croissante**, **strictement décroissante**, **strictement monotone**.

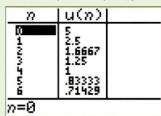
Exemples:

1) La suite u de terme général $u_n = \frac{5}{n+1}$ est strictement décroissante.

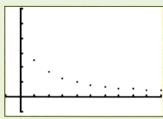
En effet, pour tout entier
$$n$$
, $u_{n+1} - u_n = \frac{5}{n+2} - \frac{5}{n+1} = \frac{-5}{(n+1)(n+2)}$.

Donc pour tout entier n, $u_{n+1} - u_n < 0$, c'est-à-dire $u_{n+1} < u_n$.

À l'aide de la calculatrice, **numériquement**, les termes sont de plus en plus petits.



Graphiquement, les points de coordonnées $(n; u_n)$ sont placés de plus en plus « bas ».



2) La suite v de terme général $v_n = 5 \times (-0.8)^n$ n'est pas monotone. En effet, chaque terme d'indice pair, qui est positif, est supérieur au terme précédent d'indice impair, qui est négatif, et supérieur au terme suivant, également négatif.

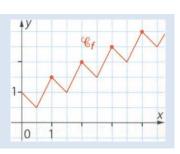
Remarque:

La réciproque de la propriété est fausse.

Soit la fonction f définie par la courbe représentative ci-contre et la suite u définie sur \mathbb{N} par $u_n = f(n)$.

On constate que pour tout entier n, $u_n = 1 + \frac{n}{2}$.

La suite u est strictement croissante, mais la fonction f n'est pas monotone.



Propriété 1

Soit une fonction f définie sur un intervalle $[a ; +\infty[$. Soit un entier $p \ge a$ et la suite i définie pour tout entier $n \ge p$ par

- Si la fonction f est (strictement) croissante sur $[p; +\infty[$, alors la suite u est (strictement) croissante à partir du
- Si la fonction f est (strictement) décroissante sur $[p; +\infty[$, alors la suite u est (strictement) décroissante à partir

Démonstration:

Voir la démonstration à l'exercice 67, page 156.

Exercice corrigé : Étudier les variations d'une suite

Soit les suites u, v et w définies sur \mathbb{N} par :

$$u_n = \frac{2^n}{n+1};$$
 $v_n = \frac{3-n}{n+1};$ $\begin{cases} w_0 = 1 \\ w_{n+1} = \frac{1}{w_n} + 1 \end{cases}$

Étudier le sens de variation des suites u, v et w.

Solution:

a) Étude de la suite u.

Il semble que la suite u est croissante.

77	[u(n)]	
Ò	1	
123456	1.3333	
3	2 .	
3	5.3333	
6	9.1429	
n=0		

Méthode :

Pour conjecturer le sens de variation d'une suite, on peut calculer les premiers termes de la suite.

Pour démontrer qu'une suite u est monotone, il s'agit, pour tout entier n, de comparer u_n et u_{n+1} .

Pour tout entier n, on a :

Four tout entier
$$n$$
, of a .
$$u_{n+1} - u_n = \frac{2^{n+1}}{(n+1)+1} - \frac{2^n}{n+1} = \frac{2^n \times 2}{n+2} - \frac{2^n}{n+1} = \frac{2^n (2n+2) - 2^n (n+2)}{(n+1)(n+2)} = \frac{2^n \times n}{(n+1)(n+2)}.$$
 étudier le signe de $u_{n+1} - u_n$. Donc, pour tout entier n , $u_{n+1} - u_n > 0$: la suite u est croissante.

On peut étudier le signe

b) Étude de la suite v.

Il semble que la suite v est décroissante.

- 77	u(n)	
0	3	
123456	33333	
Ę	2333	
6	4286	
n=0		

Pour tout entier n, $v_n = f(n)$ où f est la fonction définie sur $[0; +\infty[$ par

$$f(x) = \frac{3-x}{x+1}.$$

f est dérivable sur $[0; +\infty[$ et pour tout $x \ge 0$:

$$f'(x) = \frac{-1(x+1) - 1(3-x)}{(x+1)^2} = \frac{-4}{(x+1)^2} < 0.$$

La fonction f est strictement décroissante sur $[0; +\infty[$.

Donc la suite *v* est strictement décroissante.

c) Étude de la suite w.

$$w_0 = 1$$
; $w_1 = \frac{1}{w_0} + 1 = \frac{1}{1} + 1 = 2$, donc $w_0 < w_1$ et la suite w n'est pas

décroissante;

$$w_2 = \frac{1}{w_1} + 1 = \frac{1}{2} + 1 = \frac{3}{2}$$
, donc $w_1 > w_2$ et la suite w n'est pas croissante.

La suite w n'est pas monotone.

Lorsque la suite est définie par une formule explicite $u_n = f(n)$, on peut utiliser les variations de la fonction f dans le cas où f est monotone.

Pour démontrer qu'une suite n'est pas monotone, il suffit de trouver un contre-exemple pour la croissance et la décroissance.

3 COMPORTEMENT D'UNE SUITE À L'INFINI

Exemple 1:

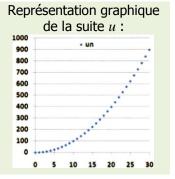
Soit la suite u définie sur \mathbb{N} par : $u_n = n^2$.

On conjecture que : u_n peut être rendu aussi grand qu'on veut si n est choisi suffisamment grand.

Pour tout entier n > 1000, on a $u_n > 10^6$;

pour tout entier $n > 10^6$, $u_n \ge 10^{12}$.

Plus généralement, pour tout réel $M \ge 0$, dès que $n \ge \sqrt{M}$, on a $u_n \ge M$.



NOTATION 1

On dit que u diverge vers $+\infty$ ou qu'elle admet $+\infty$ comme limite et on note : $\lim_{n \to +\infty} u_n = +\infty$.

Exemple 2:

Soit la suite v définie sur \mathbb{N} par : $v_n = \frac{(-1)^n}{n+2}$.

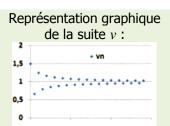
On conjecture que : v_n peut être rendu aussi proche de 1 qu'on veut si n est choisi suffisamment grand.

Pour tout entier n > 98, on a $|v_n - 1| < 0.01$;

pour tout $n > 10^6 - 2$, $|v_n - 1| < 10^{-6}$.

Plus généralement, pour tout écart e > 0, dès que $n > \frac{1}{e} - 2$, on a : $|v_n - 1| < e$,

c'est-à-dire que la distance entre v_n et 1 est inférieure à e.



NOTATION 2

On dit que ν converge vers 1 et on note : $\lim_{n \to +\infty} \nu_n = 1$.

Exemple 3:

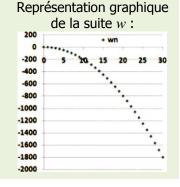
Soit la suite w définie sur \mathbb{N} par : $w_n = -2n^2 + 2$.

On conjecture que : w_n est négatif et peut être rendu aussi grand qu'on veut si n est choisi suffisamment grand.

Pour tout entier n > 708, on a $w_n \le -10^6$;

pour tout $n \ge 707\ 107$, $w_n \le -10^{12}$.

Plus généralement, pour tout réel $M \ge 0$, dès que $n \ge \sqrt{\frac{M}{2} + 1}$, on a $w_n \le M$.



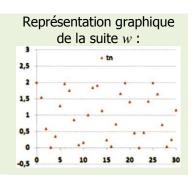
NOTATION 3

On dit que w diverge vers $-\infty$ ou qu'elle admet $-\infty$ comme limite et on note : $\lim_{n \to +\infty} w_n = -\infty$.

Exemple 3:

Soit la suite t définie sur $\mathbb{I}\mathbb{N}$ par : $t_n = \cos n + 1$.

On conjecture que : t_n ne se stabilise autour d'aucune valeur réelle : on dit que t diverge et n'admet pas de limite.



Remarque:

Les suites étant définies sur des entiers positifs, on s'intéresse exclusivement à leur comportement en +∞.

Exercice corrigé : Déterminer la limite éventuelle d'une suite numérique

Soit les suites u et v définies sur \mathbb{N} par : $u_n = \frac{2n}{n+1}$ et $v_n = (-1)^n$.

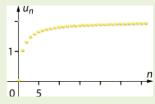
Pour chaque suite :

- a) conjecturer le comportement à l'infini : la suite paraît-elle converger ? diverger ?
- b) élaborer une démarche permettant de conforter la conjecture.

Solution:

Étude de la suite u.

a) La représentation graphique ci-contre permet de conjecturer que la suite *u* converge vers 2.



b) On commence par trouver un rang à partir duquel la distance entre u_n et 2 est inférieure à 0.01:

$$|u_n - 2| < 0.01$$
 équivaut à : $\left| \frac{2n}{n+1} - 2 \right| < 0.01$;

$$\left| \frac{-2}{n+1} \right| < 0.01 ; \quad \frac{n+1}{2} > 100 ; \quad n > 199.$$

Ainsi pour tout $n \ge 200$, la distance entre u_n et 2 est inférieure à 0.01.

On peut remarquer que :
$$u_n = \frac{2(n+1)-2}{n+1} = 2 - \frac{2}{n+1}$$
 .

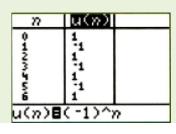
Pour n « très grand », $\frac{2}{n+1}$ est très proche de 0, et donc u_n très proche de 2.

Il semble confirmé que la suite u converge vers 2.

On écrit
$$\lim_{n \to +\infty} u_n = 2$$
.

Étude de la suite v.

- **a)** Le tableau de valeurs de v permet de conjecturer que la suite v diverge.
- **b)** Les termes de v d'indice pair valent 1, ceux d'indice impair valent -1. La suite v ne se stabilise autour d'aucune valeur, et oscille sans cesse de -1 à 1: la suite v diverge.



/	
Mathada	
Méthode	

Pour conjecturer le comportement à l'infini d'une suite, on peut représenter graphiquement la suite ou calculer les termes de la suite pour des rangs « grands ».

Pour conforter la conjecture, on peut chercher un rang à partir duquel la distance entre u_n et 2 est inférieure à 0.01, par exemple.